POLARIZATION CHARACTERISTICS OF THE COHERENT
BACKSCATTER OPPOSITION EFFECT

M. I. MISHCHENKO*

The Main Astronomical Observatory of the Ukrainian Academy of Sciences, Goloseevo, Kiev, Ukraine

(Received 7 February 1992)

Abstract. It has been suggested recently that coherent backscattering of photons from discrete dis-
ordered media, which has been recently discovered in laboratory-controlled experiments, may play a
role in peculiar radar and light scattering from some atmosphereless solar system bodies. In this paper,
a rigorous vector theory recently developed by Mishchenko (1991b, 1992a) is used to study polarization
characteristics of the coherent backscatter opposition effect. Backscattering enhancement in different
polarization components is studied and results of computer calculations for a representative selection
of scattering models are presented. It is pointed out that these calculations support recent Hapke’s
(1990) explanation of unusual radar characteristics of icy outer planet satellites.

1. Introduction

It has been suggested recently that weak localization of photons in (or coherent
backscattering from) discrete disordered media can account for peculiar reflectance
properties of some atmosphereless solar system bodies. Hapke (1990) has sug-
gested that unusual radar reflectivity of icy outer planet satellites may be explained
by weak localization of centimeter radiowaves in a regolith consisting of voids
and/or silicate rocks in an icy matrix and has pointed out that if multiple scattering
among macroscopic particles of Saturn’s rings is important in their radar reflec-
tivity, then coherent backscattering should also occur there. Mishchenko and
Dlugach (1992a) and Mishchenko (1992b) have suggested that unusually narrow
opposition effect of some icy satellites and Saturn’s rings at visible and near
infrared wavelengths may be explained by coherent backscattering of light from
upper, optically active layers of submicrometer-sized regolithic grains composed
of water ice.

For media composed of randomly distributed scattering particles and illuminated
by a parallel beam of light, weak localization manifests itself as a well-defined
narrow peak centered at zero phase angle, which is observed in the reflected light
for both intensity and polarization (see, e.g., Sheng, 1990; Nieto-Vesperinas and
Dainty, 1990). The scalar theory of weak localization is now basically well under-
stood (e.g., Akkermans ez al., 1988; Barabanenkov and Ozrin, 1988; Ishimaru
and Tsang, 1988; van der Mark ez al., 1988). According to this theory, the multiply
scattered radiation reflected by discrete random media is composed of two parts.
The first part is the diffusely scattered background radiation, which comes from
the sum of the so-called ladder terms of the Bethe—Salpeter equation. The second
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part is the coherent backscattering peak, which arises because a wave scattered
through a certain multiple-scattering path can interfere with the wave scattered
through the time-reversed path (i.e., the path that involves the same scatterers
but in the reversed order), the interference being constructive in the backscattering
direction. This coherent part of the reflected radiation comes from the sum of the
so-called cyclical terms of the Bethe—Salpeter equation (for terminology, see, e.g.,
Frisch, 1968; and Tsang et al., 1985).

Though the scalar theory is developed in detail, qualitatively explains the inter-
ference nature of weak localization, and quantitatively correctly predicts the angu-
lar width of the coherent backscattering peak, it cannot explain polarization effects
that are observed in laboratory-controlled experiments. In particular, the scalar
theory cannot reproduce the amplitudes of the backscattering peaks that are
observed in the cross-polarization for linearly polarized incident light (e.g., Wolf
et al., 1988; van Albada et al., 1988) and in the opposite-helicity channel for
circularly polarized incident light (e.g., Etemad et al., 1987). Furthermore, the
scalar theory fails to predict quantitatively the amplitude of the coherent oppo-
sition effect observed in the intensity for unpolarized incident light (Mishchenko,
1992a; Mishchenko and Dlugach, 1992b). On the other hand, accurate numerical
computations of these amplitudes for a representative selection of scattering mod-
els would be of importance for better understanding of the vector nature of
weak localization and for many astrophysical applications (e.g., Hapke, 1990).
Therefore, it is the aim of this paper to provide others with a compendium of
such computations. To this end, we use a rigorous vector theory that has been
recently developed by Mishchenko (1991b, 1992a). This theory enables one to
perform accurate vector calculations of the coherent backscattering at exactly the
backscattering direction (i.e., at zero phase angle) for rather realistic scattering
models and was found to be in good agreement with results of laboratory-con-
trolled experiments.

The paper is organized as follows. In Section 2, basic polarimetric definitions
are briefly recapitulated and backscattering enhancement factors and polarization
ratios for different representations of polarization are introduced. In Section 3,
general properties of the backscattering enhancement factors are studied. In Sec-
tion 4, results of computer calculations for a representative selection of scattering
models are presented and dependence of the enhancement factors and polarization
ratios on the properties of the medium is studied. Finally, in Section 5, the results
of the paper are summarized and discussed.

2. Basic Definitions and Formulae

We model the scattering medium by a locally plane-parallel slab composed of
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randomly distributed, independently scattering particles.* For simplicity, we as-
sume that the scattering medium is macroscopically isotropic. This implies that
the scattering particles are randomly oriented and (i) each particle has a plane of
symmetry and/or (ii) particles and their mirror particles are present in equal
numbers (van de Hulst, 1957). The direction of light incident on or reflected by
the slab is specified by the polar angle 0 < 6 < 7, which is measured from the
inward normal to the upper boundary of the slab, and by the azimuth angle
0< p=<2m

To describe the state of polarization of a beam of light, we use three familiar
representations of polarization, namely, the coherency (or density) matrix repre-
sentation D, the Stoke vector representation I, and the circular-polarization repre-
sentation Icp (€.g., Hovenier and van der Mee, 1983; Ishimaru and Yeh, 1984).
These four-component vectors are defined as
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Q-iU
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where E, and E,, are the 6- and ¢-components of the electric vector, and the
asterisk denotes the conjugate complex value.

Let the slab be illuminated by a parallel beam of light incident in the direction
(6o, ©o = 0) and let S be the Stokes reflection matrix for exactly the backscattering
direction (7 — 6y, 7). The matrix S of the block-diagonal form

* Note that in regolithic layers, the particles are, most likely, densely packed rather than sparsely
distributed. Therefore, the assumption of independent scattering may seem to be unrealistic. However,
this assumption greatly simplifies theoretical considerations and was shown by Mishchenko (1991b) to
give good results even for rather densely packed media.
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S = Si2 S 0 0 ’ (2.4)
0 0 S: Su

0 0 -8z Su

transforms the Stokes vector of the incident light I° into the Stokes vector of the
reflected light I:

_ cos 6,SI°

m™

I (2.5)

In accordance with the theory of weak localization, the matrix S may be decom-
posed as

S=S8'+S8"+8°=8"+8¢, SP=s8'+8", (2.6)

where S! is the contribution of the first-order scattering, S™ is the contribution of
all the ladder diagrams of orders n = 2, and S is the contribution of all the cyclical
diagrams. The diffusely scattered, background component comes from the sum
SP = 8! + 8", while the coherent opposition peak comes from the cyclical contri-
bution S€. For media composed of spherical or randomly oriented nonspherical
particles, the matrices S' and S™ (or S™) may be found by solving Chandrasekhar’s
vector radiative transfer equation (see, e.g., Hansen and Travis, 1974; de Rooij,
1985; de Haan et al., 1987; Mishchenko, 1990, 1991a). After calculating the matrix
S™, the matrix S© may be found from the relation (Mishchenko, 1992a)

St Sk 0 0
sL 0SS0 0

=10 0 ss osult @7
0 0 -S%% S%
where
SG=3(Sh+Sh—Sh+5Sk), (2.82)
§S=3(8% + S5+ 8% - Sk, (2.8b)
$SG=3(-Sh+ S5+ S5 +55h), (2.8¢)
SS =3(Sh — S5 + Sk + Sk (2.8d)

In the coherency matrix and circular-polarization representations, we have,
respectively (Mishchenko, 1991b, 1992a)
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where G and C are the corresponding backscattering matrices of the form

Gll 0 0 G14
g=| 0 G= G» 0 , (2.11)
0 Gy Gz 0

Gu 0 0 G

and

C 11 C 12 C ik2 C14
C= C;Z C22 C23 Cikz . (212)
C'12 C23 C22 C12

Cu Ch Cpp Cyy

Equations (2.1)—(2.12) may be used to define several backscattering enhance-
ment factors that correspond to particular experimental or natural conditions.

(i) For unpolarized incident light with I° = (1, 0, 0, 0)7, the intensity backscatt-
ering enhancement factor {; is defined as the ratio of the total backscattered
intensity to the incoherent background intensity:

L+ Sh+Sh

= 2.13
g St + St @13)
Also, we define the intensity of the incoherent background as
1 L
I=(Sll+S11)COSOO‘ (214)

™

(if) For linearly polarized incident light with electric vector in the meridional
plane (i.e., the plane through the beam and the normal to the boundaries of the
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slab), D’ = (1,0, 0, 0)”, the copolarized backscattering enhancement factor ¢ I is
defined as the ratio of the total to incoherent intensity in the copolarized channel:

Giu+Gh+ G
Gii+ Gty

i = (2.15)

Similarly, the cross-polarized enhancement factor ¢, is defined as the ratio of the
total to diffuse intensity in the cross-polarized channel, i.e.,
_Gu+Gi+GhL

Gu+Ghn

& (2.16)

For linearly polarized incident light with electric vector perpendicular to the
meridional plane, D° = (0,0, 0, 1)7, the copolarized backscattering enhancement
factor {f is defined as

GiL.+GL+GS
Gis+GL

(= , (2.17)
while the corresponding cross-polarized enhancement factor is given by Equation
(2.16).

Also, we define the corresponding linear polarization ratios of the incoherent
background, yi:%, and of the backscattering peak, wi?, as ratios of the crosspolar-
ized to copolarized intensities:

Gis+ Gy

1
XL = , (2.18)
- Gn +Gh
2 _Gist+ Gl (2.19)
XL GL—{—G{“‘" .
Gili+GL + G&
1 14 14 14
= , 2.20
e G +Gh+G§ ( )
2= Gist Gt Gy @.21)

GL+GL+GS

(iii) For circularly polarized incident light with I, = (0, 1, 0, 0)”, we define the
backscattering enhancement factors in the helicity-preserving channel, {,,, and in
the opposite-helicity channel, £, as

_ Ch+Ch+C5
Ch+ Ch

{hp ) (2 . 22)

_ Cu+Ch+Ch
Ci+ Ch

goh (2 23)

Also, we define the circular polarization ratios of the incoherent background, yc,
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and of the backscattering peak, uc, as ratios of the intensities in the helicity-
preserving channel to the intensities in the opposite-helicity channel, i.e.,

Cl, + CL
Y = %’ (2.24)
Cyu + C
| L C
.= Cn+Cyh+Cx (2.25)

- oAl L [
Cy + Cy + (3

3. General Properties of the Backscattering Enhancement Factors

For macroscopically isotropic media, the Stokes matrix S' has the form (cf. van
de Hulst, 1957; Bohren and Huffman, 1983)

S' = diag(S11, S22, S33, Sia) - 3.1
For spherical particles,
S%1=S%2 and S%1= _S‘11_4. (3.2)

For randomly-oriented nonspherical particles, these equalities do not generally
hold.

It is convenient to rewrite Equations (2.13), (2.15)-(2.17), (2.22), and (2.23)
in terms of the matrices S' and S™. We have

1
=Si1 + ST +3(STi+Sh—Sh+Sh)

3.3
“ St + St ¢
ﬁzﬁﬁsg+ﬁh+mb+mb’ (3.4)

S+ 8L +8hH+25L + 855

f=$ﬁ42+wh—mb+w; 35)
LSt sh+sh-2sh+sh ‘

; =Si1_552+51f1—5£'2_5§3+554 (3.6)
} Sthi—8hL+sh-sh ’ ‘

[ = St + Sk, +28% + 285,
S+ Sk S+ Sh

, (3.7)

Sii—Suu+Sh+Sh—-S%-Sk
Sii—Sia+8Sh— Sk

{oh = (38)

The vector radiative transfer equation together with Equations (3.1)—(3.8) can
be used to derive some general properties of the backscattering enhancement
factors. For grazing incidence, small single-scattering albedos w, or small optical
thicknesses of the slab 7, the main contribution to the backscattered incoherent
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Fig. 1. The backscattering enhancement factor ¢y versus the angle of incidence 6, for the semi-infinite
homogeneous slab composed of polydisperse spherical particles with a = A, b=0.05, and N = 1.3,
1.45, 1.6, and 1.75.
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Fig. 2. As in Figure 1, for the intensity /.

background comes from the singly scattered photons. Therefore, one easily finds
by inspection that the factors { ﬁ’z, 41, and £, obey the limits (Mishchenko, 1992a)

lim é=1lim é=1limé=1, 3.9

Bp— /2 w—0 7—0

where ¢ stands for {ﬁ’z, &1, or L. For spherical particles, the factor ¢, has no
such definite limits, while
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For randomly-oriented nonspherical particles, the factors {, and (., obey the
limits of Equation (3.9). Also, for the case of normal incidence,

{1(60=0)={f(60=0),  xiL(6o=0)=xi(60=0),
pi(6o=0) = ui(6=0) (3.11)
(see Hovenier and de Haan, 1985).
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Fig. 5. As in Figure 1, for the polarization ratios i (solid lines) and xi (dashed lines).
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Additional properties of the backscattering enhancement factors can be derived
by using the inequalities that must be satisfied by any Stokes transformation matrix
of the block-diagonal form

a b 0 0
b c 00
00 del’
0 0 —e f
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(see Section 3.3 of Hovenier et al., 1986). By applying these inequalities to the
matrix S", we have from Equations (3.3)—(3.8)

1s<¢l?<2, (3.12)
0<¢ <2, (3.13)

0<g<2, (3.14)
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1<(p<2, (3.15)
0s{n=2. (3.16)

4. Calculations and Discussion

In this section, we present results of numerical calculations for several scattering
models. For simplicity, we assume that the scattering slab is homogeneous and
optically thick (semi-infinite) and is composed of lossless spherical particles with
radii governed by the standard gamma distribution (Hansen and Hovenier, 1974)

n(r) = constant X r!739% exp[—r/(ab)] , 4.1)

where a is the effective radius and b is the effective variance. In all of our
computations, the value b = 0.05 was used. To calculate the matrices S' and S*
for the semi-infinite slab, we used de Rooij’s (1985) numerical procedures.

In Figures 1-9, the computations are given for particles with a/A =1 and four
values of the refractive index N = 1.3, 1.45, 1.6, and 1.75, where A is the free-
space wavelength. In Figures 10-18, the computations are reported for Rayleigh
scattering (particle radii are much smaller than the wavelength) and spherical
particles with N =1.45 and three values of the effective radius @ = 0.3, 1, and
2 um. The wavelength is A =1 um.

The following obvious properties of the backscattering enhancement factors and
polarization ratios can be extracted from the numerical data shown.

(i) In the resonance region of particle radii (a ~ A), the factor {; is almost
independent of a.

(ii) The factor ¢{; is a monotonically decreasing function of the angle of incidence
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for large refractive indices, while for small refractive indices it may have a maxi-
mum at 6, # 0.

(iii) The factors {| and {f are always monotonically decreasing functions of the
angle of incidence. The difference between these two factors is (very) small for
Mie particles, but is substantial for Rayleigh scattering.

(iv) The factor {; is usually smaller than the factors {2
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(v) The factors ¢ and {|* are much smaller for larger refractive indices. This
is a consequence of the increasing contribution of the first-order scattering.

(vi) The factor {, is always a monotonically increasing function of the angle of
incidence.

(vii) The factor ¢, is (much) smaller than the factors {|** at small angles of
incidence, but may become larger at angles of incidence near 90°.

(viii) The factor (., is (much) smaller than the factor ., =2 (see Equation
(3.10)).
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(ix) The factor {,, has a (sharp) maximum at around 6, = 80°.
(x) The linear and circular polarization ratios are smaller for larger refractive
indices. This results from the increasing contribution of the first-order scattering.

5. Summary and Conclusions

In this paper, a rigorous vector theory of weak localization for exactly the back-
scattering direction was used to study how polarization characteristics of the
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coherent backscatter opposition effect depend on the properties of the scattering
medium. We have presented a compendium of calculations for a representative
selection of scattering models which, we hope, will be useful to those analysing
observational data.

Although our aim here was not to use the theory for interpretation of some
observations, it should be noted that our calculations support Hapke’s recent
explanation of unusual radar characteristics of icy outer planet satellites (Hapke,
1990). Radar observations of these satellites at centimeter wavelengths show that
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Fig. 18. As in Figure 10, for the polarization ratio pc.

when illuminated and observed in linearly polarized radiation, u;= 0.5, while
when illuminated and observed in circularly polarized radiation, uc>1 (e.g.,
Ostro, 1982). Our calculations show that multiple scattering and weak localization
of radio waves in discrete disordered media can easily result in the observed values
of these polarization ratios.
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